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Abstract. A new equation of state for hot white dwarfs of small and interme-
diate masses, which takes into account the contribution of an ideal relativistic
electron subsystem, the contribution of a gas nuclear subsystem, and the light
pressure was proposed. The internal structure of dwarfs was calculated within
such model. It was shown that the proposed model agrees with the observed
distribution of white dwarfs on the mass-radius plane. Based on the observed
data on masses and radii of white dwarfs, there was solved the inverse problem
– the determination of model parameters for the specific stars.
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1. Introduction

The discovery of white dwarfs at the beginning of the last century (Adams,
1915) gave a rise to the problem of energy sources and stability of stars, which
have no thermonuclear reactions or occur only in the outer layers with a low
intensity and therefore play a secondary role. According to the idea of Fowler
(1926), the stability of white dwarfs is provided by the quantum effect – the
degeneracy of the electron subsystem, when kBT is much smaller than the elec-
tron energy at the Fermi surface. Chandrasekhar generalized this idea to the
case of high densities, for which the electron subsystem is relativistic, and con-
structed the theory of cold white dwarfs based on the hydrostatic equilibrium
equation (Chandrasekhar, 1931). The Chandrasekhar model is two-component:
a completely degenerate ideal electron subsystem and a subsystem of nuclei,
which is considered as a continuous classical environment. The equilibrium
between the pressure of electron gas at T = 0K and the gravitational com-
pression, created by the nuclear subsystem provides the stability of a white
dwarf. The white dwarf characteristics (mass, radius, and distribution of mat-
ter) are functions of two dimensionless parameters: the relativistic parameter
x0 = ~(mec)

−1(3π2n(0))1/3 (n(0) is the number density of electrons in the stel-
lar center, me is the electron mass, c is the speed of light) and the chemical
composition parameter µe = 〈A/z〉 ≈ 2.0, where A is the mass number, z is the
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charge of the nucleus. The main conclusions from Chandrasekhar’s theory are
the peculiar unambiguous mass-radius dependence and the restriction on the
maximal mass (the Chandrasekhar limit),

Mmax = 2.01824 . . . µ−2
e M0,

M0 =

(
3

2

)1/2
1

4πm2
u

(
hc

G

)3/2

≈ 2.8866 . . .M�,
(1)

where mu is the atomic mass unit. The restriction on the mass is confirmed by
observations: for 110 years white dwarfs with masses M > Mmax have not been
detected. However, the mass-radius relation is satisfied only for white dwarfs of
quite large masses (Mmax > M & 0.2M0) with small radii,

R . R0 =

(
3

2

)1/2
1

4πmume

(
h3

cG

)1/2

≈ 1.1 · 10−2R�. (2)

This is clearly illustrated in Fig. 1a, constructed from the data of masses and
radii of the observed white dwarfs from the catalog of Tremblay et al. (2011).
The envelope dashed curve in Fig. 1b corresponds to the Chandrasekhar theory.
The chains in Fig. 1b correspond to the observed white dwarfs with the same ef-
fective temperature, from which follow the conclusion about the important role
of the finite temperature effects in the formation of white dwarfs’ characteristics
with small and intermediate masses. The problem of the internal structure of
hot white dwarfs of small masses became relevant only after a wide variety of
the characteristics of white dwarfs (masses, radii, effective temperatures, and
luminosities) were revealed during the last 25 years with the help of space ob-
servatories. The Chandrasekhar model uses the equation of state of a completely
degenerate ideal electron subsystem. From a modern view point, it is quite ide-
alized and does not take into account the important factors of the white dwarfs’
structure formation: interparticle interactions, axial rotation, magnetic fields
and finite temperature effects. This is the basic model that explains the exis-
tence and stability of massive cold white dwarfs. It cannot explain the radiation
of white dwarfs and the main details of their distribution on the mass-radius
plane. Hot low-mass white dwarfs should not be considered correctly within the
Chandrasekhar model, because their effective temperature reaches (4÷8)·104K,
and the luminosity of some of them exceeds the luminosity of the Sun.

The problem of energy sources of white dwarfs was actively discussed in 1939-
1952. Marshak (1940) followed the idea of gravitational compression, but did
not investigate this mechanism. Schatzman proposed the idea of thermonuclear
reactions in the surface layers of white dwarfs. A physically based idea, according
to which white dwarfs emit a reserve of thermal energy accumulated in the
past due to thermonuclear reactions, was proposed by Kaplan (1949, 1950).
According to his idea, thermal energy is mainly concentrated in the nuclear
subsystem, which can be considered as a classical ideal gas. The average value
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Figure 1. The coordinates of white dwarfs of the spectral class DA with different

temperatures on the mass-radius plane (data about masses and radii are taken from

the catalog of Tremblay et al. (2011)). The chains correspond to the white dwarfs with

close values of effective temperatures. The dashed curve is the mass-radius dependence

for the cold white dwarfs.
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of the kinetic energy of such model is

WT ≈
3

2

kB
muµn

∫
V

ρ(r)T (r)dr ≈ 3

2

kB
muµn

MT, (3)

where ρ(r) is the density of matter, µn is the dimensionless molecular mass of
the nucleus in the units mu, T ≡ 〈T (r)〉 is the average value of temperature
by the stellar volume. We can estimate the temperature value in the inner part
of a white dwarf (which is considered nearly isothermal due to the electron
mechanism of heat conduction) by the Schatzman (1947) formula

T = T0

(
L/L�
M/M�

)2/7

, T0 = 6.16 · 107K. (4)

This expression is obtained by analyzing the system of structural equations in
the peripheral region of a white dwarf (Shapiro & Teukolsky, 1983). According
to Kaplan’s idea, the luminosity is

L ≈ − d

dt
WT ≈ −

3

2

kB
muµn

M
dT

dt
. (5)

On the other hand, the luminosity can be determined from equation (4),

L = L�
M

M�

(
T

T0

)7/2

. (6)

Equating the right-hand sides of equalities (5) and (6), Kaplan obtained a dif-
ferential equation that determines the dependence of the white dwarf’s temper-
ature on its age, or cooling time of a white dwarf (Kaplan, 1950)

τ = τ0

(
M/M�
L/L�

)5/7

, τ0 =
3

5

kBT0

muµn

M�
L�
≈ 5

µn
· 107 years. (7)

At the same time, it is assumed that the temperature of the white dwarf at the
time of its formation was much higher than observed at the present time. For
low-luminosity white dwarfs L/L� ≈ 10−5, therefore the cooling time is of the
order of 109 years. For hot white dwarfs with masses M ≈ 0.2M0 and effective
temperatures Teff ≈ 5 · 104K the luminosity L ≈ L�, therefore the cooling time
for them is close to 107 years. For bright white dwarfs of small masses with
temperatures Teff ≈ (7 ÷ 9) · 104K, the cooling time is of the order of 3 · 106

years.
In Tab. 1 there are shown the data of masses, radii and luminosities of low-

mass dwarfs with effective temperatures in the range (2÷9)·104K. In this Table
there are also shown the estimates of an average dimensionless temperature
T∗ = kBT/mec

2 according to formula (4).
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Table 1. The macroscopic characteristics of DA type white dwarfs from the catalog

of Tremblay et al. (2011).

Number R/R0 M/M0 Teff , K T∗
3 1.8295 0.145498 23010 0.00669

111 1.91470 0.142034 25740 0.00787
104 2.3415 0.176676 72130 0.02692
106 2.87548 0.180140 84430 0.03605
158 3.82335 0.148962 78960 0.04149
266 1.74757 0.152426 28480 0.00821
377 2.11256 0.128177 20890 0.00671
688 1.95930 0.142034 27970 0.00876
592 2.42551 0.193997 86620 0.03297
921 1.29941 0.232104 54370 0.01288
928 2.27731 0.200926 88080 0.03209
2472 1.28454 0.232104 51770 0.01209
2531 1.34523 0.221711 50170 0.01213
2836 0.89115 0.322174 58380 0.01025
2929 1.24836 0.245961 60420 0.01397
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Figure 2. Dependence of the temperature T on the effective temperature Teff , calcu-

lated by formula (4) for the group of white dwarfs from the catalog of Tremblay et al.

(2011).
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It should be expected that due to the high thermal conductivity of white
dwarfs, the temperature in the inner region is higher, the higher effective tem-
perature. This is confirmed by Fig. 2, which shows the dependence “Teff − T”,
where Teff is taken from the catalog of Tremblay et al. (2011), and T is calcu-
lated by formula (4). It would be incorrect to neglect the pressure of the nuclear
subsystem at such high temperatures.

To clarify the elementary theory of cooling of white dwarfs as described
above, we used a model in which the structure of the nuclear subsystem can
vary from an ideal gas to a crystal lattice (Shapiro & Teukolsky, 1983). At the
same time, the role of the electron subsystem was not taken into account, as in
the work of Kaplan (1950).

Further development of this approach for the calculation of massive white
dwarfs can be found in the work of Bisnovatyi-Kogan (1966), in which the
temperature correction (∼ T 2) to the pressure of the electron subsystem is
taken into account within the isothermal electron-nuclear model.

2. Model and equation of state

As it was shown from the calculation supplementing the Chandrasekhar model
by the axial rotation (James, 1964) or interparticle interactions (Vavrukh et al.,
2018), these have a little effect on the characteristics of cold massive dwarfs.
High effective temperatures and observed distribution on the mass-radius plane
indicate the important role of the finite temperature effects in the formation
of hot white dwarfs structure. This is confirmed by approximate calculations
within the generalized Chandrasekhar model, in which the electron subsystem
is not completely degenerate (Vavrukh & Smerechynskyi, 2012, 2013).

The purpose of our work is to calculate the internal structure of specific
observed white dwarfs within a simple spherically symmetric two-component
model: a partially degenerate ideal electron subsystem + a nuclear subsystem
which is considered as an ideal classical gas. Such model corresponds to the
equation of state

P (r) = Pe(r) + Pn(r) + Pph(r). (8)

where Pe(r) is the partial pressure of the electron subsystem on the sphere of
radius r,

Pn(r) =
kBT (r)

muµn
ρ(r) (9)

is the partial pressure of the nuclear subsystem, where T (r) is the local temper-
ature and ρ(r) is the density of matter. The term

Pph(r) =
a

3
T 4(r) (10)

takes into account the photon pressure (a = k4
B(~c)−3π2/15). The correct de-

scription of the electron subsystem of a hot white dwarf requires the usage
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of two-phase or three-phase models: because in the inner region the electron
subsystem is relativistic and deviation from the total degeneracy is small; in
the periphery region the subsystem is degenerate, but not relativistic; near the
star surface electrons can be considered as an ideal classical gas (Vavrukh &
Smerechynskyi, 2012). However, the contributions of the peripheral region to
the integral characteristics are small due to the low density. Therefore, to sim-
plify the problem, we will assume that the electron gas is everywhere degenerate,
and its chemical potential µ is positive. The terms Pe(r) and Pn(r) depend on
the thermodynamic parameters ρ(r) and T (r). In order to simplify the problem,
we will pass to one parameter – the local relativistic parameter

x(r) =
~
mec

[
3π2n(r)

]1/3
, (11)

where n(r) is the number density of electrons on the sphere of radius r, and
therefore the density of matter

ρ(r) =
muµe
3π2

(mec

~

)3

x3(r). (12)

According to the method of Eddington (1926), the sum of light pressure and
gas pressure of the nuclear subsystem can be approximately represented in the
form of a polytropic dependence

Pph(r) + Pn(r) = K[ρ(r)]4/3, K =

[
1− β
β4

]1/3 ~c
(muµn)4/3

(
45

π2

)1/3

, (13)

where the coefficient β determines the relative value of gas pressure (β =
Pn(r)[Pn(r) + Pph(r)]−1 = const). Relations (9) – (13) determine the depen-
dence between the matter density and temperature,

kBT (r) = γ
~c

(muµn)1/3
ρ1/3(r) = γ

(
µe
µn

)1/3

(3π2)−1/3mec
2x(r), (14)

and the coefficient γ is the root of the equation

π2

45
γ4 + γ = α, α ≡ K(~c)−1(muµn)4/3. (15)

According to relations (12) – (14)

Pn(r) + Pph(r) =
πm4

ec
5

3h3

8α

(3π2)1/3

(
µe
µn

)4/3

x4(r). (16)

As it was known (Shapiro & Teukolsky, 1983), the equation of state of an ideal
homogeneous relativistic subsystem of electrons at finite temperatures is written
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in the following parametric form
Pe =

8π

3h3

∞∫
0

dp p3 dEp
dp

np,

Ne
V

=
8π

h3

∞∫
0

dp p2 np,
(17)

where

Ep = [(mec
2)2 + p2c2]1/2 −mec

2, np =
{

1 + exp[(Ep − µ)/kBT ]
}−1

. (18)

The deviation from the absolute degeneracy can be considered small if
µ(kBT )−1 � 1. The approximate calculations of integrals (17) at this basis
and the following exception µ from the obtained system of algebraic equations
allows us to represent Pe as follows

Pe(x) =
πm4

ec
5

3h3

{
F0(x) + F2(x) + F4(x) + · · ·

}
,

F0(x) = x(2x2 − 3)(1 + x2)1/2 + 3 ln[x+ (1 + x2)1/2];

F2(x) =
4π2T 2

∗
3

x(2 + x2)

(1 + x2)1/2
;

F4(x) = −π
4

45
T 4
∗

[
72 + 136x2 + 77x4 + 18x6

]
x−3(1 + x2)−3/2; . . . .

(19)

Here F0(x) determines the pressure of the absolute degenerate electron subsys-
tem (at T = 0) and has the following asymptotics

F0(x)→

 2x4 − 2x2 + · · · at x� 1,
8

5
x5 − 4

7
x7 + · · · at x� 1.

(20)

The dimensionless temperature is determined by the relation

T∗ = kBT (mec
2)−1. (21)

To obtain the coordinate dependence of the partial pressure of the electron
subsystem in the white dwarfs’ model, x should be replaced in formulae (19)
and (20) by the local value of the relativistic parameter (11).

To simplify the problem, we model the coordinate dependence of temperature
in expressions (19). The significant deviation from the absolute degeneracy of
the electron subsystem occurs when kBT (r) is proportional to the local value
of the Fermi energy,

kBT (r) ≈ A ·mec
2
{

[1 + x2(r)]1/2 − 1
}
. (22)
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We select the coefficient A so that for x(r) � 1 the relation between T (r) and
x(r) is given by expression (14). At this condition

T∗(r) ≈ α(3π2)−1/3

(
µe
µn

)1/3{
(1 + x2(r))1/2 − 1

}
. (23)

At this modeling of the coordinate dependence of the dimensionless temperature,
all terms F2(x(r)), F4(x(r)), . . . have the same asymptotics relative to the x(r)
as the main term of expansion (see (20)), temperature corrections are small and
series (19) coincides. At this F2(x(r)) ∼ α2, F4(x(r)) ∼ α4 and etc. We restrict
ourselves to the quadratic approximation by T∗(r), which makes it possible to
depict the model equation of state in the following approximate form

P (r) ∼=
πm4

ec
5

3h3

{
F0(x(r)) +

8α

(3π2)1/3

(
µe
µn

)4/3

x4(r)+

+ 4α2π2/33−5/3

(
µe
µn

)2/3

f(x(r))

}
,

(24)

where

f(x(r)) = x(r)[2 + x2(r)](1 + x2(r))−1/2
{

[1 + x2(r)]1/2 − 1
}2
, (25)

and α is the model parameter. Due to the presence of multiplier α2, the third
term in the curly bracket of formula (24) is small, which allows us to take it into
account by the approximate method. As it is easy to see, the ratio f(x)/F0(x) in
the interval 0 ≤ x ≤ 1 is a monotonously decreasing function that very weakly
depends on x and varies from the value 0.3125 at x = 0 to the value 0.2959 at
x = 1. Therefore, the sum of the first and third terms in the curly bracket of
formula (24) with sufficiently high accuracy can be written in the form

F0(x(r))

{
1 + 1.216α2π2/33−5/3

(
µe
µn

)2/3}
≡ F0(x(r))(1 +B), (26)

replacing the fraction f(x)/F0(x) with its average value 0.304 on the interval
0 ≤ x ≤ 1. Here

B = 1.216α2π2/33−5/3

(
µe
µn

)2/3

. (27)

3. Equilibrium equation

The internal structure of a white dwarf is determined by the equilibrium equa-
tion

∇P (r) = −ρ(r)∇Φ(r), (28)



24 M. Vavrukh and D. Dzikovskyi

where

Φ(r) = −G
∫
V

ρ(r′)dr′

|r− r′|
(29)

is the gravitational potential on the sphere of radius r, created by the distribu-
tion of matter. Using equation of state (24) in approximation (26) and relation
(12), let us reduce equation (28) to

(1 +B)
x(r)∇x(r)

[1 + x2(r)]1/2
+ C∇x(r) = −muµe

mec2
∇Φ(r), (30)

where

C =
4α

(3π2)1/3

(
µe
µn

)4/3

. (31)

Using the identity

x∇x
[1 + x2]1/2

= ∇
{

[1 + x2]1/2 − 1
}
, (32)

acting by operator ∇ on equation (30) and taking into account that ∇2Φ(r) =
4πGρ(r), we obtain the differential equation for the local value of the relativistic
parameter

(1 +B)∆
{

[1 + x2(r)]1/2 − 1 + C̃x(r)
}

= −32π2G

3(hc)3

[
memuµec

2

]2

x3(r), (33)

where C̃ = C/(1 + B). It follows from formulae (27) and (31) that B =
1.216C2π2(48)−1(µn/µe)

2, and C̃ = C{1 + 1.216C2π2(48)−1(µn/µe)
2}−1. We

consider a white dwarf without axial rotation i. e. beings spherically symmetric,
and its chemical composition is spatially homogeneous. Therefore, in our model
there appear four dimensionless parameters: x0 ≡ x(0) (the relativistic param-
eter in the stellar center), C, µe and µn which for the specific white dwarf are
constants.

In order to numerically solve the equilibrium equation, it is convenient to
pass from the variables (r, x(r)) to the dimensionless variables

ξ =
r

λ
, y(ξ) = ε−1

0

{
[1 + x2(r)]1/2 − 1 + C̃x(r)

}
, (34)

where
ε0 = ε0(x0, C̃) = (1 + x2

0)1/2 − 1 + C̃x0, (35)

and λ is the length scale. If we determine it from the condition

32π2G

3(hc)3

{
memuµec

2λε0

}2

= 1 +B ∼= 1 + 1.216
π2

48
C̃2

(
µn
µe

)2

, (36)
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Figure 3. The solution of the equilibrium equation at the fixed value of x0 = 0.5 for

different values of the parameter C̃. Curve 1 corresponds to the standard model at

C̃ = 0, curve 2 – C̃ = 0.05, 3 – C̃ = 0.1, 4 – C̃ = 0.15.
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and express x(r) through y(ξ) using definition (34), then the equation for the
function y(ξ) takes the form

∆ξy(ξ) = −x3(ξ, C̃),

x(ξ, C̃) =
x(r)

ε0
≡
{
ε0(1− C̃2)

}−1{
[C̃2 + (ε0y)2 + 2ε0y]1/2 − C̃(1 + ε0y)

}
.
(37)

This equation corresponds to the boundary condition y(0) = 1, as well the
condition dy/dξ = 0 at ξ = 0, which ensures the non-singular nature of the
solution in the white dwarf center. As it is easy to see, in the limit C̃ → 0
the right-hand side of equation (37) equals (y2(ξ) + 2ε−1

00 y(ξ))3/2, as in the
Chandrasekhar model, where ε00 ≡ ε0(x0, 0). A set of solutions of the two-
parametric equation (37), found by the numerical method for several values of
parameters C̃ and x0 is illustrated in Figs. 3 and 4.

In accordance with relations (34) the radius of the white dwarf is

R(x0, µe, C̃) = λξ1(x0, C̃) = R0
ξ1(x0, C̃)

µeε0(x0, C̃)
(1 +B)1/2, (38)

where ξ1(x0, C̃) is the root of equation y(ξ|x0, C̃) = 0, and R0 is determined
by formula (2), λ(C) is the root of equation (36), and parameters C and C̃ are
related by

2γC =
1

C̃
−
√

1

C̃2
− 4γ, (39)

where γ = π2(48)−1(µn/µe)
2. The stellar mass is determined by the solution of

equation (37),

M(x0, µe, C̃) =
M0

µ2
e

M(x0, C̃)(1 +B)3/2, (40)

where

M(x0, C̃) =

ξ1(x0,C̃)∫
0

ξ2x3(ξ, C̃) dξ. (41)

Dependence of the dimensionless radius on the model parameters is illus-
trated in Fig. 5. Herewith, the dashed curve corresponds to the standard Chan-
drasekhar model (C̃ = 0). The dimensionless white dwarf mass M(x0, C̃) is
illustrated in Fig. 6 as a function of x0 for different values of the parameter C̃.
Relations (14) and (15) give us an opportunity to determine the temperature
change along the radius

T (ξ, C̃) = γ

(
µe
µn

)1/3
mec

2

(3π2)1/3kB
x(ξ, C̃). (42)
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To illustrate the capabilities of our approach in Figures 7 and 8 we show how
both density and temperature vary with the radius.

The crosses in Fig. 9 depict the location of observed white dwarfs (from the
catalog of Tremblay et al. (2011)) on the mass-radius plane. Curves in this figure
depict the dependence between the mass and the radius of white dwarfs in our
model. They were constructed from relations (38) – (41) for several values of
the parameter C̃ for a range of the relativistic parameter (0.3 ≤ x0 ≤ 0.8).
Herewith, we used the value µe = 2, as well as µn = 4 (that corresponds to
helium white dwarfs). As it is shown in Figure, in the selected region of the
change of the parameter C̃ our model can describe the distribution of observed
hot white dwarfs of small and intermediate masses on the mass-radius plane.
This is impossible to achieve in the Chandrasekhar model, which corresponds
to the lower curve in Figure with C̃ = 0. The standard model satisfactorily
describes only the distribution of white dwarfs with sufficiently large masses
and radii R(x0, C̃) . R0.
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Figure 9. The mass-radius relation for different values of the parameter C̃. The dashed

curve corresponds to the standard model (C̃ = 0), curve 1 – C̃ = 0.05, 2 – C̃ = 0.1,

3 – C̃ = 0.15, 4 – C̃ = 0.19. The crosses correspond to the observed data from the

catalog of Tremblay et al. (2011).

To calculate the internal structure of the observed white dwarfs, it is nec-
essary first to solve the inverse problem of the theory – the determination of
model parameters for a specific white dwarf based on the observed data. To
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demonstrate the algorithm for such calculation, we consider Fig. 9 from which
it can be seen that a theoretical mass-radius curve can always be drawn through
a point with the given observed mass M and radius R with the certain param-
eter value C̃. This is the parameter value C̃ for a chosen white dwarf. Putting
instead R(x0, C̃) and M(x0, C̃) the observed R and M in relations (38) and
(40), we obtain the system of equations for the parameters x0 and µe

R

R0

ε0(x0, C̃)

ξ1(x0, C̃)
=

1

µe
(1 +B)1/2,

M

M0
=

1

µ2
e

M(x0, C̃)(1 +B)3/2.

(43)

Excluding µe, we obtain the equation

M

M0

(
R0

R

)2
(
ξ1(x0, C̃)

ε0(x0, C̃)

)2

=M(x0, C̃)(1 +B)1/2 (44)

for finding the relativistic parameter x0, after that the parameter µe is deter-
mined by the first of equations (43).

Since the parameter B plays the role of correction, it makes sense to con-
sider a simplified version of the model with absolute degeneracy of the electron
subsystem, that corresponds to B = 0 (or C̃ = C). The model parameters for
the group of white dwarfs from the catalog Tremblay et al. (2011) calculated in
such way are shown in Tab. 2. Using relations (12) and (14), we calculated the
density of matter and temperature in the center of these white dwarfs ρc = ρ(0)
and Tc = T (0). These values are also shown in Tab. 2. As we can see, the tem-
perature T 0

c calculated by formula (4) is almost (1.5 – 3) times smaller than the
temperature Tc obtained by formula (42). This cannot be a criterion, because
formula (4) is approximated and corresponds to the isothermal model.

In order to evaluate the role of incomplete degeneracy of the electron sub-
system we considered a group of white dwarfs that corresponds to C = 0.15 in
Tab. 2. At B = 1.216 (48)−1π2C2(µn/µe)

2 these dwarfs correspond to the mass-
radius curve with C̃ = 0.142. Model parameters x0 and µe are determined from
the system of equations (43), as well as calculated on this basis ρc(0) and Tc(0)
are shown in Tab. 3. From the comparison of Tabs. 2 and 3 it follows that the
influence of incomplete degeneracy of the electron subsystem is weak and leads
to small changes of parameters and characteristics of the model. In particular,
the relative decreasing of the relativistic parameter x0 has an order of 0.6%,
decreasing ρc corresponds to 2%, and the decreasing Tc is close to 5%.

4. Discussion

According to Fowler’s idea, the stability of white dwarfs ensured by the pressure
of the degenerate electron subsystem is an extrapolation of the real thermody-
namical state of these objects in the case of low temperatures or high pressures.
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Table 2. The characteristics and the model parameters for the group of white dwarfs of

spectral class DA from the catalog Tremblay et al. (2011) at B = 0 (T 0
c approximately

corresponds to equation (4)).

Number R/R0 M/M0 x0 µe ρc, 106 g cm−3 Tc, 109K T 0
c , 109K

C = 0.1
2270 3.13742 0.079677 0.346458 2.03348 0.080993 0.105513 0.048904
3026 2.09943 0.142034 0.603049 2.00554 0.427125 0.183657 0.069994
441 1.88942 0.166283 0.703784 1.99963 0.678915 0.214336 0.090419
2581 1.67358 0.197461 0.841388 1.99714 1.160080 0.256243 0.106619

C = 0.15
2922 2.82645 0.135105 0.472760 1.99620 0.205788 0.215153 0.144974
1246 2.64303 0.142034 0.508990 2.01176 0.256818 0.231642 0.146958
2606 2.49710 0.152426 0.548329 2.00757 0.321086 0.249545 0.141763
2090 2.15203 0.183604 0.668973 1.99890 0.583074 0.304450 0.148608
2507 1.98346 0.200926 0.744181 2.00258 0.802663 0.338677 0.157729

C = 0.19
2017 3.63580 0.131641 0.387910 1.99912 0.113682 0.222433 0.069164
397 3.25419 0.148962 0.444555 1.98260 0.171109 0.254914 0.211635
592 2.42551 0.193997 0.626813 1.99922 0.479636 0.359423 0.199981

Chandrasekhar’s theory is based on this idea. The position of observed white
dwarfs on the mass-radius plane indicates the different ages of these stars and
reflects their evolution. The generalized theory of white dwarfs can be built by
generalization of Fowler’s idea, using a more general form of the equation of
state.

The simplest variant of such approach is proposed in our article to describe
hot white dwarfs, whose nuclear subsystem can be considered as a classical gas.
We have also approximately taken into account the incomplete degeneracy of
the electron subsystem. The electron subsystem in our work is treated almost in
the same way as in the Fowler-Chandrasekhar model, but the nuclear subsystem
is treated as in the theory of main sequence normal stars. Since the nuclear
subsystem contributes to the total internal pressure, the mass and radius of the
white dwarf in this model are greater than in the standard Chandrasekhar model
that corresponds to the observed data. The mass-radius curves calculated by us

Table 3. The characteristics and the model parameters for the group of white dwarfs

of spectral class DA from the catalog Tremblay et al. (2011) at B 6= 0 (C̃ = 0.142).

Number R/R0 M/M0 x0 µe ρc, 106 g cm−3 Tc, 109K
2922 2.82645 0.135105 0.469604 1.99206 0.201694 0.202473
1246 2.64303 0.142034 0.505594 2.00879 0.251712 0.217990
2606 2.49710 0.152426 0.544676 2.00578 0.314711 0.234840
2090 2.15203 0.183604 0.664536 2.00011 0.571548 0.286519
2507 1.98346 0.200926 0.739257 2.00529 0.786835 0.318735
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agree with the distribution of observed white dwarfs on the mass-radius plane.
Herewith, the calculated radii of white dwarfs can exceed the corresponding
values in Chandrasekhar’s theory by 2-3 times.

The Fowler-Chandrasekhar model has dimensionless parameters x0 and µe.
The parameter C̃ reflects the partial pressure of the nuclear subsystem. We
determine this parameter for a specific white dwarf based on the condition that
the theoretically calculated mass-radius curve for a given C̃ passes through the
point corresponding to the observed mass and radius of the white dwarf. After
that the parameters x0 and µe are determined from relations (43). This allows
us to calculate all characteristics for a specific white dwarf (the distribution of
matter and the temperature along the radius, moment of inertia, total energy
and etc.).
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