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Abstract. Solar flares, which are powerful explosions on the Sun’s surface, are
well recognized driving forces that have a significant impact on the near-Earth
environment, causing extra ionization within the sunlit Earth’s atmospheric
layers. Based on how they affect the lower ionosphere and its electron density
profile, X-ray solar flares can be categorized. In order to forecast the effects
of potential solar occurrences during the waning phase of Solar Cycle 25, this
study focuses on the disturbances caused by X-ray solar flares. In this pa-
per we examined Solar Cycle progression i.e. solar activity of highest intensity
(strongest 50 solar flares) during the ascending phase of Solar Cycle 25 by
conducting numerical ionospheric modeling based on the Geostationary Oper-
ational Environmental Satellite (GOES) database on solar X-ray radiation.
Key words: Space weather — Solar activity — Solar X-ray flares — radio signal
perturbations — GOES — data — modeling — electron density

1. Introduction

Strong explosions of electromagnetic radiation that come from the Sun’s surface
are known as solar flares (SFs) (Bothmer et al., 2007; Kahler, 1982; Tandberg-
Hanssen & Emslie, 2009; Davidson, 2020; Riley & Love, 2017). The SF classifi-
cations range from A to X-class (see e.g. Grubor et al., 2008; Hayes et al., 2021,
and references therein). Strong flares have the ability to impair communication
and navigation systems and can cause disturbances in the ionosphere, affecting
terrestrial communication. SFs emit powerful X-ray and ultraviolet radiation
that can ionize the upper atmosphere, resulting in extra free electrons (Kho-
dairy et al., 2020; Le et al., 2013; Sulié¢ et al., 2016; Curto, 2020; Barta et al.,
2022). These unbound electrons can affect radio wave propagation by changing
the ionosphere’s refractive characteristics (Thomson & Clilverd, 2000; Suli¢ &
Srec¢kovié, 2014; Kolarski & Grubor, 2014; Sreckovié, 2023). The density of the
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ionosphere briefly increases, affecting radio signals going through it (McRae &
Thomson, 2004; Kelly, 2009; Nina et al., 2019; Sreckovi¢ et al., 2024, 2017).
To forecast the impacts of potential solar occurrences during the declining
phase of Solar Cycle 25, this study focuses on the disruptions induced by X-ray
solar flares. In this paper, we investigated Solar Cycle progression, i.e. solar ac-
tivity of highest intensity (strongest 50 solar flares) during the ascending phase
of Solar Cycle 25 using numerical ionospheric modeling and the Geostation-
ary Operational Environmental Satellite (GOES) (Aschwanden, 1994; Woods
et al., 2024) database on solar X-ray radiation (https://data.ngdc.noaa.gov/
platforms/solar-space-observing-satellites/goes).
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Figure 1. The graph shows the number of C, M and X-class solar flares that were
produced during Solar Cycle 25 during the accessing phase, presented by year.

This study’s findings may help to improve forecasting models (Gorney, 1990;
Lean, 2010; Georgieva & Shiokawa, 2018; Bilitza et al., 2012, 2022), allowing for
greater prediction and preparedness for ionospheric disruptions produced by
high class SFs. The study of high-class SFs during Solar Cycle 25 and their
impact on the ionosphere emphasizes the importance of ongoing research and
monitoring of such occurrences to improve our understanding of space weather
phenomena and protect technological infrastructure from potential disruptions.
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The paper is organized as follows. This Section describes the current state
and an introduction to the research problem. Section 2 provides results and
analysis concerning the strongest solar flares of Solar Cycle 25 and their subiono-
spheric impact, whereas Section Sec. 3 presents the conclusions and future per-
spectives of research.

2. Results and discussion

In this paper focus is on the further use of numerical method, so called easyFit
that were developed by Srec¢kovié et al. (2021a,b) on the cases of high intensity
SF's i.e. the strongest ones. We note that initially easyFit methods were devel-
oped for SF events of mid to high intensity (upper C-, M- and lower X-class
SF's, see e.g. papers Sreckovié et al. (2021b); Kolarski et al. (2022)).

Datasets from this paper provide an overview of the results obtained by
applying the numerical methods easyFit to the examples chosen for investiga-
tion, namely the top 50 SF of Solar Cycle 25 from X1.2 to X9. Solar X-ray
flux was obtained from the Geostationary Operational Environmental Satellite
(GOES) archive database (https://data.ngdc.noaa.gov/platforms/solar-
space-observing-satellites/goes).

Figure 1 shows the number of C, M and X-class solar flares that were pro-
duced during the ascending branch of Solar Cycle 25 presented by year from
2020 to the end of 2024. We observe that, beginning in 2020 and reaching their
peak at the end of 2024, the frequency of solar flares is clearly rising. It can be
noted that on Jul 3, 2021 X1.59 - class flare occurred as the first X-class flare
of Solar Cycle 25 and the first X-class solar flare since September 10, 2017.

Figure 2 upper panel shows sunspot number that were produced during the
accessing phase of Solar Cycle 25 presented by year. We note that the number
of sunspots is visibly increasing starting from 2020 and reaches its current max-
imum at the end of 2024. From the listed cases, differences in X-ray flux are
associated with solar activity. Lower panel of Figure 2 shows the 50 strongest
solar flares of Solar Cycle 25 (black circles) and corresponding reference height
ionospheric D-region electron density (red circles). The left axis of the lower
panel of Figure 2 shows the soft X-ray flux, while the right axis shows the
perturbed values of the ower ionospheric electron density due to solar flares.
The electron density is obtained by the easyFit method that was developed by
Sreckovi¢ et al. (2021a,b). One can observe a correlative behavior of increasing
solar activity with increasing electron density.

Examining Solar Cycle progression we note that ionospheric disturbances
and its parameters are correlated with solar activity during the ascending phase
of Solar Cycle 25. These results will allow us to predict and model the ionosphere
and its parameters during the waning phase of the Solar Cycle 25.
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Figure 2. Upper panel: The graph shows sunspot number that were produced during
Solar Cycle 25 by year; lower panel: The graph shows the 50 strongest solar flares of
Solar Cycle 25 (black circles) and corresponding reference height ionospheric electron
density (red circles).

3. Summary and future development

Solar flares, which are powerful explosions on the Sun’s surface, are well rec-
ognized driving forces that have a significant impact on the near-Earth envi-
ronment, causing extra ionization within the sunlit Earth’s atmospheric layers.
In order to forecast the effects of potential solar occurrences during the whole
Solar Cycle 25, this study focuses on the disturbances caused by X-ray solar
flares from 2020 to the end of 2024.

In this contribution, we investigated Solar Cycle progression, i.e. solar ac-
tivity of highest intensity (strongest 50 solar flares) during the ascending phase
of Solar Cycle 25, using numerical ionospheric modeling and the Geostationary
Operational Environmental Satellite (GOES) database on solar X-ray radiation.
Numerical method easyFit were applied to research impact of SFs of highest in-
tensity ranging from X1 to X9 during 2020-2024 i.e. the ascending phase of Solar
Cycle 25, with the aim to obtain parameters of perturbed lower ionosphere.
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The results of this work could aid in the development of forecasting models,
enabling better anticipation and readiness for ionospheric disturbances brought
on by high-class SFs (see e.g. Gopalswamy, 2022). In order to better understand
space weather events and safeguard technological infrastructure from potential
disruptions, it is crucial to conduct continuous research and monitoring of high-
class SFs during Solar Cycle 25 and their effects on the ionosphere.
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