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ABSTRACT: The computer code for a most useful interpolation subroutine is presented, based
on a little-known algorithm by Tsipouras and Cormier (1973).

RESUME: Le code informatique d'un sous-programme d'interpolation des plus utiles, fonde
sur un algorithme peu connu de Tsipouras et Cormier (1973), est presente.
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I. INTRODUCTION

In this paper I describe a computer program (INTEP) which is a remarkably effective
interpolation routine. Because it has proved to be extremely useful I have been encouraged
to publish the computer code, thereby making it available for widespread use. The
mathematical source of the program is a little-known paper called "Hermite interpolation
algorithm for constructing reasonable analytic curves through discrete data points" by
Tsipouras and Cormier (1973). I present this program to draw the attention of the
astronomical community to this algorithm in the hope that they will forsake the use of
polynomials when it is desired to draw "reasonable curves" through tabular or experimental
data points.

II. THE PROGRAM
General Comments

INTEP is based on a modification of the Hermite interpolation formula (see Hildebrand
1974, page 377; Johnson and Riess 1977, page 196) by Tsipouras and Cormier (1973) who used
it to draw what they describe as "reasonable curves" through a variety of meteorological
data. The main constraint of their algorithm is the requirement that the derived
interpolated curve should match what one might subjectively draw by hand through the same
data points. The examples they use amply illustrate the power of their algorithm over
Lagrangian interpolation polynomials (see Hildebrand pages 80, 159) and least-squares fits
of polynomials to data. The least-squares fitting of polynomials to data is the most common
interpolation procedure used by astronomers. Such fits, however, most often fail at
extrema. This is a well-known problem with polynomials (see Tsipouras and Cormier; Johnson
and Riess 1977, page 201) and it causes difficulty when, for example, one is attempting to
rectify spectra. In this case one wants the fitted curve to go through certain continuum
points but the user usually settles for minimal excursions about these points since
polynomial interpolation will rarely fit this type of data. Two examples, typical of the
kind of non-analytical functions which INTEP handles so well, are shown in Figures 1 and 2.
Here reasonable curves are drawn through a H-D (characteristic) curve (log Intensity vs log
Density) in Figure 1 and through a simulated speetral continuum in Figure 2. For
comparison, high-order polynomial fits are also shown. In these examples, contrary to those
of Tsipouras and Cormier, the differences between the alternative schemes are small but they
adequately show the difficulties.

Program Outline

The FORTRAN code is given in Table 1 with detailed instructions as to its use. The
data may be in ascending or descending order. For random interpolation calls one should
simply call INTEP. When rectifying a spectrum for example the calculations can be expedited
by calling INTEP initially and thereafter entering the subroutine through EINTEP. As an
example of the speed gained in this way INTEP was run on an array of 16 elements with 105
interpolation steps. With no ENTRY calls the execution time on a VAX 11/780 was 32 seconds,
but with the ENTRY call the time was 13 seconds.

I wish to thank Tony Lynas-Gray for his enthusiastic response to INTEP and for
insisting that the code be published. Steve Morris had many useful comments on the
manuscript; [ thank him.

Dominion Astrophysical Observatory,
Victoria, B.C.
September, 1982.
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Figure 1. Comparison between INTEP and a high order polynomial
with reference to a characteristic curve.
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Figure 2. Comparison between INTEP and two high order polynomials
with reference to simulated continuum data.
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TABLE 1. INTEP

SUBROUTINE INTEP(XP,P,X,F,N,IER)
Purpose:
To interpolate a function value P for a given argument
value XP using a table of N values (X,F).
This is a Spline Interpolation scheme based on Hermite polynomials.
The source is U.S. Airforce Surveys in Geophysics No 272.
Usage:
For random values of XP
CALL INTEP(XP,P,X,F,N,IER)
or after the first call to INTEP with monotonically increasing
or decreasing values of XP consistent with the X vector
CALL EINTEP(XP,P,X,F,N,IER)
Description of parameters:
XP The chosen argument value.
4 The resultant interpolated value.
X The vector of independent values.
F The vector of function or dependent values.
N The number of points in the (X,P) vectors.
IER The resultant error parameter.
Remarks:
If XP is beyond either extreme in the vector X the value of F
at that extreme is adopted and IER set to 2.
REAL LP1,LP2,L1,L2
DIMENSION F(1),X(1)
IER=1
10=1
1UP=0
IF(X(2).LT.X(1))1uP=1
N1=N-1
IF((XP.GE.X(N).AND.IUP.EQ.0).0R. (XP.LE.X(N).AND.IUP.EQ.1))THEN
5 P=F(N)
GO TO0 6
ELSE IF((XP.LE.X(1).AND.IUP.EQ.0).OR.
* (XP.GE.X(1).AND.IUP.EQ.1))THEN
P=F(1)
6 [IER=2
RETURN
END IF
ENTRY EINTEP(XP,P,X,F,N,IER)
8 DO 1 I=IO,N
IF(XP.LT.X(I).AND.IUP.EQ.0)GO TO 2
IF(XP.GT.X(I).AND.IUP.EQ.1)GO TO 2
1 CONTINUE
GO TO 5
2 I=I-1
IF(1.EQ.10-1)G0 TO 4
10=I+1
LP1=1./(X
LP2=1./(X
IF(I.EQ.1
IF(1.EQ.1
FP1=(F(I+
N
N

)-X(1+1))
+1)-X(I))
P1=(F(2)-F(1))/(X(2)-X(1))
0703
(I-1))/(X(I+1)-X(I-1)

(F(N)=F(N=-1))/(X(N)-X(N-1))
TO 4

1)/ (X (

F(1))/(x(1+2)-X(1))
1)

~

)
)
)
)
N

3 IF(I.GE.
IF(I.GE.
FP2=(F(I+

4 XPI1=XP-X
XPI=XP-X(I
L1=XPI1*LP1
L2=XPI*LP2
P=F(1)*(1.-2.*LP1*XPT)*L1*L14F (I+1)*(1.~ 2.*LP2*XPI1)

1*L2*L2+FP2*XPI1*L2%L2 +FP1*XPI*L1*L1
RETURN
END
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