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Abstract. In general relativity, the acceleration of a test particle in the vicinity
of a massive object should be calculated by using the equation of geodesic.
The specific formula for the acceleration is, however, well-known only in the
Schwarzschild coordinates. Here, we present this formula in the frame with
the spatial part identical to the common rectangular coordinate frame. The
orientation of the acceleration and identification of physical quantities with
the general integration constants can better be discerned in the latter. We
emphasize that the gravitational acceleration in general relativity, for system
of particles being in rest, consists of two terms. The first term is identical with
the acceleration derived on the basis of Newton’s gravitational law. The second
term, having a smaller size above the event horizon, is a repulsive contribution
to the total, attractive, gravity. The relativistic formula implies that the gravity
should be repulsive below the event horizon, because the second term dominates
in this region.

Key words: gravitational acceleration – general relativity – x-y-z coordinate
frame – repulsive contribution to gravity

1. Introduction

In Einstein’s theory of general relativity (Einstein, 1915, 1916), the gravitational
acceleration of a test particle (TP, hereafter) in the vicinity of other, massive,
particle (MP) is given by the equation of geodesic (EoG). To calculate the
acceleration, it is necessary to know the metrics of space-time generated by the
MP in which the TP is situated. When the MP is a point-like particle, the outer
Schwarzschild metrics (OSM) (Schwarzschild, 1916) is relevant.

The metric tensor characterizing the OSM is well known in the Schwarzschild
coordinate system O(r, ϑ, ϕ, ct) (t is time and c is the speed of light in vacuum),
i.e. with the spatial part identical with the common spherical coordinate system
O(r, ϑ, ϕ). The components of the metric tensor enable us to calculate the size
of the acceleration in the frame with the origin identical with the position of
the point-like MP. Namely, the acceleration depends only on the grr and gtt
components of metric tensor, which both depend only on the radial distance
from the MP, r.
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However, sometimes we need to calculate the acceleration in a specific di-
rection, in which its orientation is seen better than in the spherical coordinate
frame. In this work, we derive the formula for the acceleration in the coordi-
nate frame O(x,y,z,τ), i.e. the frame with the spatial part identical with the
rectangular coordinate frame O(x,y,z). We denoted τ = ct. The general formula
would be very large and, thus, difficult. Because of this reason, we adopt the
assumption reducing the formula: we deal with the case when both MP and TP
are in rest and, moreover, the MP is situated in the origin of the O(x,y,z) frame.

In the Euclidean geometry, the transformation between the spherical and
rectangular coordinates is trivial. However, one can doubt if this is also valid in
a curved space-time of general relativity. In this paper, we explicitly make the
transformation. Although it does not give us any new result, the demonstration
of how the transformation can be performed might be useful. Perhaps, it can
also serve as an exercise in teaching, in a basic course on general relativity.

Beside the explicit derivation of the transformation, we are interested in a
comparison between the relativistic and Newtonian formulas for the gravita-
tional acceleration, since this comparison can help us to understand a relation
between the integration constants in the Schwarzschild solution of the field equa-
tions and mass.

2. Transformation of coordinate frames

The coordinates in the common spherical frame, O(r, ϑ, ϕ), are related to their
counterparts in the rectangular frame, O(x,y,z), as

x = r cosϕ sinϑ, (1)

y = r sinϕ sinϑ, (2)

z = r cosϑ. (3)

Based on these relations, the transformation relations from O(r, ϑ, ϕ) to O(x,y,z)
are

r =
√
x2 + y2 + z2, (4)

sinϑ =

√
x2 + y2

x2 + y2 + z2
, cosϑ =

z√
x2 + y2 + z2

, (5)

sinϕ =
y√

x2 + y2
, cosϕ =

x√
x2 + y2

. (6)

In view of the calculation of derivatives of these coordinates, it is more useful
to consider the relations

tanϑ =

√
x2 + y2

z
, (7)

tanϕ =
y

x
, (8)
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or
ϑ = arctan

ρ

z
, (9)

ϕ = arctan
y

x
. (10)

In relation (9), we used denotation

ρ =
√
x2 + y2. (11)

Further, we also denote

R =
√
x2 + y2 + z2. (12)

Although r = R formally symbol R is not a variable; it is only a denotation of
the square root of the sum of x, y, and z, all squared.

One can easily find that the partial derivatives of the spherical coordinates
in respect to their rectangular counterparts are

∂r

∂x
=
x

R
, (13)

∂ϑ

∂x
=

xz

R2ρ
, (14)

∂ϕ

∂x
= − y

ρ2
, (15)

∂r

∂y
=
y

R
, (16)

∂ϑ

∂y
=

yz

R2ρ
, (17)

∂ϕ

∂y
=

x

ρ2
, (18)

∂r

∂z
=

z

R
, (19)

∂ϑ

∂z
= − ρ

R2
, (20)

∂ϕ

∂z
= 0. (21)

If we assume both TP and MP being in rest, then

∂t

∂x
= 0, (22)

∂t

∂y
= 0, (23)

∂t

∂z
= 0, (24)

∂(ct)

∂τ
= 1. (25)
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In the Schwarzschild coordinates with the spatial part being the spherical
coordinates, only the diagonal components of the metric tensor are non-zero,
i.e.

gµν =


g11 0 0 0

0 g22 0 0
0 0 g33 0
0 0 0 g44

 ≡

grr 0 0 0
0 gϑϑ 0 0
0 0 gϕϕ 0
0 0 0 gtt

 . (26)

This tensor can be transformed to its counterpart in the O(x,y,z,τ) coordinate
frame by using a well-known transformation formula

gµν =
∂xα

∂xµ
∂xβ

∂xν
gαβ . (27)

The result of the transformation is given in Appendix A.

3. x-component of acceleration

As we mentioned in Sect. 1, we consider two particles, TP and MP. The MP is
situated in the origin of the coordinate frame. The acceleration of the TP at
distance x from the MP is given by the EoG,

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= 0, (28)

where Γαβγ are the Christoffel symbols and ds is the line element in the four-
dimensional space-time. Two Christoffel symbols, which are necessary for our
calculation of the x-component of the acceleration, are calculated in Appendix
C.

With the help of the obvious equality

dxα

ds
=
dxα

dt

dt

ds
, (29)

we can calculate the second derivative of xα in respect to s. Specifically (Strau-
mann, 2013, p. 59),

d2xα

ds2
=

d

ds

(
dxα

dt

dt

ds

)
=

[
d

ds

(
dxα

dt

)]
dt

ds
+
dxα

dt

d2t

ds2
=
d2xα

dt2

(
dt

ds

)2

+
dxα

dt

d2t

ds2
.

(30)
The second derivative d2t/ds2, occurring in relation (30), can be calculated by
using EoG (28) and relation (29) as

d2t

ds2
≡ d2x4

ds2
= −Γ4

βγ

dxβ

dt

dt

ds

dxγ

dt

dt

ds
. (31)

Now, we can calculate the acceleration d2x/dt2. Identifying x = x1, we obtain

d2x1

ds2
= −Γ1

αβ

dxβ

ds

dxγ

ds
(32)
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from EoG (28). Supplying relations (30) and (29) into the left-hand and right-
hand sides of the last equation, respectively, this equation acquires the form

d2x1

dt2

(
dt

ds

)2

+
dx1

dt

(
−Γ4

βγ

dxβ

dt

dt

ds

dxγ

dt

dt

ds

)
= −Γ1

βγ

dxβ

dt

dt

ds

dxγ

dt

dt

ds
. (33)

Further, if it is divided by (dt/ds)2 and the terms are re-arranged, the x-
component of acceleration becomes

d2x1

dt2
=

(
Γ4
βγ

dx1

dt
− Γ1

βγ

)
dxβ

dt

dxγ

dt
. (34)

For the system of TP and MP in rest, dx1/dt ≡ dx/dt = 0, dx2/dt ≡ dy/dt =
0, dx3/dt ≡ dz/dt = 0, and

dx4

dt
≡ dτ

dt
=
d(ct)

dt
= c. (35)

When we also take into account relation (C17) derived in Appendix C, relation
(34) is reduced to

d2x1

dt2
≡ d2x

dt2
= −c2Γxττ =

c2

2

(
gxx

∂gττ
∂x

+ gxy
∂gττ
∂y

+ gxz
∂gττ
∂z

)
. (36)

The contravariant components of the metric tensor in this relation are given
by relations (B40)−(B42) derived in Appendix B. With the help of them, the
acceleration can be given more explicitly as

d2x

dt2
=
c2

2

{[
x2

R2

(
1 +

1

grr

)
− 1

]
∂gττ
∂x

+
xy

R2

(
1 +

1

grr

)
∂gττ
∂y

+

+
xz

R2

(
1 +

1

grr

)
∂gττ
∂z

}
. (37)

We assume that both TP and MP are situated in vacuum, therefore the
metrics generated by the MP is the OSM. It is characterized by the metric
tensor

gµν =


grr 0 0 0
0 gϑϑ 0 0
0 0 gϕϕ 0
0 0 0 gττ

 =

=


−
(
1− 2L

r

)−1
0 0 0

0 − r2 0 0
0 0 − r2 sin2 ϑ 0
0 0 0 Kc2

(
1− 2L

r

)
 (38)
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Symbols K and L stand for the constants.
In this metrics, the derivatives of component gττ in respect to spatial coor-

dinates x, y, and z are

∂gττ
∂x

= K
2L

R3
x, (39)

∂gττ
∂y

= K
2L

R3
y, (40)

∂gττ
∂z

= K
2L

R3
z, (41)

(42)

therefore formula (37) can further be simplified to

d2x

dt2
=
Kc2L

R3

{[
x2

R2

(
1 +

1

grr

)
− 1

]
x+

xy2

R2

(
1 +

1

grr

)
+

+
xz2

R2

(
1 +

1

grr

)}
=
Kc2L

R3

[
x2 + y2 + z2

R2

(
1 +

1

grr

)
x− x

]
. (43)

Or, after a further handling with this relation, we can obtain

d2x

dt2
=
Kc2L

R3grr
x. (44)

When the grr component in the OSM is also expressed explicitly (see relation
(38)) the formula for the acceleration in the direction of the coordinate axis x
is

d2x

dt2
= −

(
1− 2L

R

)
Kc2L

R3
x. (45)

(The formulas for the remaining spatial components of the acceleration, in y and
z directions, can simply be obtained by doing the cyclic interchange of variables:
x→ y → z → x.)

When the TP is situated on the coordinate x-axis, i.e. the components y and
z of its radius vector are zero, then R =

√
x2 + 0 + 0 = |x| and

d2x

dt2
= −

(
1− 2L

|x|

)
c2KL

x2

x

|x|
. (46)

4. Calibration of constants and discussion

Our final formula (45), giving the acceleration of TP in the direction of the
coordinate x-axis, can be applied to real objects if the constants K and L are
determined. Constant K used to be chosen to equal unity. We have kept this
constant explicitly up to this point because there are some solutions of the field
equations requiring K 6= 1.
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Let us now establish a new constant, M , defined by the relation

L =
GM

c2
, (47)

where G is the Newton gravitational constant. With the help of the new constant
and putting K = 1, formula (45) can be re-written as

d2x

dt2
= −

(
1− 2GM

c2R

)
GM

R2

x

R
. (48)

y

x

z

AB
x B xA

Figure 1. The positions, A and B, of the test particle (TP) in the field of a massive,

point-like particle, which is placed in the origin of the rectangular coordinate frame.

Notice that x > 0 at position A, but x < 0 at position B.

In the limit of weak gravitational field, i.e. when 2GM/(c2R) � 1, the last
formula is reduced to its counterpart in the Newtonian physics,

d2x

dt2
= −GM

x2

x

R
. (49)

with M being the mass of the MP. We can see that it correctly determines the
orientation of the acceleration. This is clear when we consider two positions of
the TP, A and B, on the coordinate x-axis shown in Fig. 1. If the TP is at
position A, then its x coordinate xA > 0. Hence, xA = |xA| and the acceleration
d2x/dt2 = −GM/|xA|2 < 0. This means, it is oriented in the opposite direction
in respect to the orientation of the coordinate x-axis. If the TP is at position
B, then xB < 0 and xB = −|xB |. This implies that the acceleration d2x/dt2 =
+GM/|xB |2 > 0. Its orientation is the same as the orientation of the x-axis.
Thus, seeing Fig. 1, the TP is attracted toward the MP at both positions.
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Let us return to the relativistic formula (48). We see that the acceleration
is expressed by two terms, explicitly

d2x

dt2
= −GM

R2

x

R
+

2G2M2

c2R4
x. (50)

Notice that the sign of the second, relativistic, term is opposite to the first, New-
tonian, term. In other words, the first (second) term is negative (positive) when
x > 0 and vice versa when x < 0. The relativistic term reduces the Newtonian
term above the event horizon, i.e. when 2GM/(c2R) < 1. When the gravita-
tional acceleration in this region is calculated (i) using the relativistic formula
(48) and (ii) the Newtonian formula (49), then the relativistic acceleration is
smaller than its Newtonian counterpart.

The relativistic term of acceleration can be understood as a repulsive con-
tribution to the attractive Newtonian acceleration. There have been published
solutions of the field equations to model the relativistic compact objects, which
implied an outward oriented gravitational attraction in the innermost region of
the objects (Ni, 2011; Neslušan, 2015, 2017a,b, 2019; deLyra, 2021; Neslušan,
2022; deLyra & Carneiro, 2023; deLyra et al., 2023). Since the relativistic term
is proportional to the mass of MP squared, there can occur a distribution of
matter where the relativistic term dominates even above the event horizon (e.g.
Neslušan, 2019, Sect. 3). When we take into account this possibility, the outward
oriented gravitational attraction in the innermost region of compact objects, ac-
cording to some models of these, is not surprising.

The relativistic term clearly dominates below the event horizon, i.e. in the
regime of gravity with 2GM/(c2R) > 1 according to the derived formulas. This
means that a TP is repelled from a massive object (black hole?) in this region.

5. Conclusion

The orientation of the gravitational attraction within general relativity is more
transparent in the O(x,y,z,ct) coordinate frame than in the Schwarzschild co-
ordinates O(r, ϑ, ϕ, ct). The character of the constants in the OSM can also be
better discerned in the former frame.

We derived the formula giving the acceleration of a TP in the vicinity of
an MP when both particles are in rest. According to our result, the relativis-
tic acceleration consists of two terms implying partial accelerations in mutually
opposite directions. The first term is related to the attractive gravity and it is
identical with the gravitational acceleration derived from the Newton gravita-
tional law. The second term, the size of which is smaller than the size of the first
one above the event horizon (except for some special distributions of matter),
implies a certain reduction of the acceleration in a simple case of the gravita-
tional action between two objects. The second term can also be represented as
the relativistic, repulsive, complement of the Newtonian formula.
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A. Metric tensor in O(x,y,z,τ) frame

Using the general transformation formula (27), the components of the metric tensor,
gα,β , in the O(x,y,z,τ) coordinate frame can be calculated and the result is:

g11 ≡ gxx =
x2

R2
grr −

x2z2

R2ρ2
− y2

ρ2
, (A1)

g12 ≡ gxy =
xy

R2
grr −

xyz2

R2ρ2
+
xy

ρ2
, (A2)

g13 ≡ gxz =
xz

R2
grr +

xz

R2
, (A3)

g14 ≡ gxτ = 0, (A4)

g22 ≡ gyy =
y2

R2
grr −

y2z2

R2ρ2
− x2

ρ2
, (A5)

g23 ≡ gyz =
yz

R2
grr +

yz

R2
, (A6)

g24 ≡ gyτ = 0, (A7)

g33 ≡ gzz =
z2

R2
grr −

ρ2

R2
, (A8)

g34 ≡ gzτ = 0, (A9)

g44 ≡ gττ = gtt. (A10)

Since the product of two derivatives is commutative, i.e. (∂xα/∂xµ)(∂xβ/∂xν) =
(∂xβ/∂xν)(∂xα/∂xµ), and gµν = gνµ in the Schwarzschild coordinates, it is also valid
that

gαβ = gβα. (A11)

In other words, the tensor gαβ in the O(x,y,z,τ) coordinate system can be given as

gαβ =

 gxx gxy gxz 0
gxy gyy gyz 0
gxz gyz gzz 0
0 0 0 gττ

 (A12)

If the TP is located on the coordinate x-axis, then y = z = 0 and the the spatial
components of the metric tensor gαβ reduce to

gxx = grr, (A13)

gyy = −1, (A14)

gzz = −1, (A15)

gαβ = 0 for α 6= β. (A16)
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B. Contravariant components of metric tensor

To calculate the Christoffel symbols (in Appendix C), we need to know the contravari-
ant form of the metric tensor gαβ . It is well known that the covariant and contravariant
components are related by the formula

gασg
σβ = δβα, (B1)

where δβα is the Kronecker delta (it is equal to 1 if α = β and 0 if α 6= β).
When we use relation (B1), the fact that gαβ = gβα, and omit zero terms, we can

write the following five sets of equations:
1-st set:

g11g
11 + g12g

21 + g13g
31 = 1, (B2)

g12g
11 + g22g

21 + g23g
31 = 0, (B3)

g13g
11 + g23g

21 + g33g
31 = 0, (B4)

(B5)

2-nd set:

g11g
12 + g12g

22 + g13g
32 = 0, (B6)

g12g
12 + g22g

22 + g23g
32 = 1, (B7)

g13g
12 + g23g

22 + g33g
32 = 0, (B8)

(B9)

3-rd set:

g11g
13 + g12g

23 + g13g
33 = 0, (B10)

g12g
13 + g22g

23 + g23g
33 = 0, (B11)

g13g
13 + g23g

23 + g33g
33 = 1, (B12)

(B13)

4-th set:

g11g
14 + g12g

24 + g13g
34 = 0, (B14)

g12g
14 + g22g

24 + g23g
34 = 0, (B15)

g13g
14 + g23g

24 + g33g
34 = 0, (B16)

(B17)

5-th set:

g44g
41 = 0, (B18)

g44g
42 = 0, (B19)

g44g
43 = 0, (B20)

g44g
44 = 1. (B21)
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Since g44 6= 0, Set 5 immediately implies g41 = g42 = g43 = 0 and g44 = 1/g44.
Each of Sets 1 to 4 is the system of three equations with three unknown variables. We
can use the method of determinants to solve each system. The basic determinant is
the same for all four sets,

D =

∣∣∣∣∣g11 g12 g13
g12 g22 g23
g13 g23 g33

∣∣∣∣∣ ≡
∣∣∣∣∣gxx gxy gxz
gxy gyy gyz
gxz gyz gzz

∣∣∣∣∣ =

= gxxgyygzz + 2gxygxzgyz − g2xzgyy − g2xygzz − gxxg2yz. (B22)

After we solve the system of equations, we obtain:
from Set 1:

g11 ≡ gxx =
1

D
(gyygzz − g2yz), (B23)

g21 ≡ gyx =
1

D
(gxzgyz − gxygzz), (B24)

g31 ≡ gzx =
1

D
(gxygyz − gxzgyy); (B25)

from Set 2:

g12 ≡ gxy =
1

D
(gxzgyz − gxygzz), (B26)

g22 ≡ gyy =
1

D
(gxxgzz − g2xz), (B27)

g32 ≡ gzy =
1

D
(gxygxz − gxxgyz); (B28)

from Set 3:

g13 ≡ gxz =
1

D
(gxygyz − gxzgyy), (B29)

g23 ≡ gyz =
1

D
(gxygxz − gxxgyz), (B30)

g33 ≡ gzz =
1

D
(gxxgyy − g2xy); (B31)

and from Set 4: g14 ≡ gxτ = 0, g24 ≡ gyτ = 0, and g34 ≡ gzτ = 0. We see that
gα4 = g4α.

Let us now derive the determinant D and the contravariant components explicitly.
The determinant, given by relation (B22), can be re-written as

D = gxxA+ gxzB + gxyC, (B32)

where we denoted

A = gxxgzz − g2yz, (B33)

B = gxygyz − gxzgyy, (B34)

C = gxzgyz − gxygzz. (B35)
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When we supply the explicit forms of the gαβ components given by relations (A1) to
(A8) into the last three relations, we obtain

A =
1

R2

[
x2 −

(
y2 + z2

)
grr
]
, (B36)

B =
xz

R2
(grr + 1) , (B37)

C =
xy

R2
(grr + 1) , (B38)

and the determinant
D = grr (B39)

after some algebraic handling.
When relations (A1) to (A8) and (B39) are supplied into (B23), (B26), and (B29),

they acquire the form

gxx =
x2

R2

(
1 +

1

grr

)
− 1, (B40)

gxy =
xy

R2

(
1 +

1

grr

)
, (B41)

gxz =
xz

R2

(
1 +

1

grr

)
. (B42)

For a particle situated on the coordinate x-axis, we can prove that the only non-
zero contravariant components are

g11 ≡ gxx =
1

gxx
=

1

grr
, (B43)

g22 ≡ gyy =
1

gyy
= −1, (B44)

g33 ≡ gzz =
1

gzz
= −1, (B45)

g44 ≡ gττ =
1

gττ
. (B46)
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C. Christoffel symbols Γ1
βγ and Γ4

βγ

We recall the well-known general formula to calculate the Christoffel symbols,

Γαβγ =
1

2
gασ

(
∂gσβ
∂xγ

+
∂gσγ
∂xβ

− ∂gβγ
∂xσ

)
. (C1)

In the following, this formula is used to calculate the symbols figuring in relation (34)
that we use in our derivation. At first, we give the implicit result.

The symbols with the upper index ”1” are

Γ1
11 =

1

2
g11

∂g11
∂x1

+ g12
∂g12
∂x1

− 1

2
g12

∂g11
∂x2

+ g13
g13
∂x1
− 1

2
g13

∂g11
∂x3

, (C2)

Γ1
12 =

1

2
g11

∂g11
∂x2

+
1

2
g12

∂g22
∂x1

+
1

2
g13
(
∂g13
∂x2

+
∂g23
∂x1

− ∂g12
∂x3

)
, (C3)

Γ1
13 =

1

2
g11

∂g11
∂x3

+
1

2
g12
(
∂g12
∂x3

+
∂g23
∂x1

− ∂g13
∂x3

)
+

1

2
g13

∂g33
∂x1

, (C4)

Γ1
14 = 0, (C5)

Γ1
21 =

1

2
g11

∂g11
∂x2

+
1

2
g12

∂g22
∂x1

+
1

2
g13
(
∂g23
∂x1

+
∂g13
∂x2

− ∂g12
∂x3

)
, (C6)

Γ1
22 = g11

∂g12
∂x2

− 1

2
g11

∂g22
∂x1

+
1

2
g12

∂g22
∂x2

+ g13
∂g23
∂x2

− 1

2
g13

∂g22
∂x3

, (C7)

Γ1
23 =

1

2
g11
(
∂g12
∂x3

+
∂g13
∂x2

− ∂g23
∂x1

)
+

1

2
g12

∂g22
∂x3

+
1

2
g13

∂g33
∂x2

, (C8)

Γ1
24 = 0, (C9)

Γ1
31 =

1

2
g11

∂g11
∂x3

+
1

2
g12
(
∂g23
∂x1

+
∂g12
∂x3

− ∂g13
∂x2

)
+

1

2
g13

∂g33
∂x1

, (C10)

Γ1
32 =

1

2
g11
(
∂g13
∂x2

+
∂g12
∂x3

− ∂g23
∂x1

)
+

1

2
g12

∂g22
∂x3

+
1

2
g13

∂g33
∂x2

, (C11)

Γ1
33 = g11

∂g13
∂x3

− 1

2
g11

∂g33
∂x1

+ g12
∂g23
∂x3

− 1

2
g12

∂g33
∂x2

+
1

2
g13

∂g33
∂x3

, (C12)

Γ1
34 = 0, (C13)

Γ1
41 = 0, (C14)

Γ1
42 = 0, (C15)

Γ1
43 = 0, (C16)

Γ1
44 = −1

2
g11

∂g44
∂x1

− 1

2
g12

∂g44
∂x2

− 1

2
g13

∂g44
∂x3

. (C17)

Notice that Γ1
αβ = Γ1

βα.

The non-zero symbols with the upper index ”4” are

Γ4
14 = Γ4

41 =
1

2
g44

∂g44
∂x1

, (C18)

Γ4
24 = Γ4

42 =
1

2
g44

∂g44
∂x2

, (C19)

Γ4
34 = Γ4

43 =
1

2
g44

∂g44
∂x3

. (C20)
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When the TP and MP are in rest, we need to know, explicitly, only symbol Γ1
44 ≡

Γxττ to calculate the x-component of the acceleration. In the simplest case, when the
TP is situated on the coordinate x-axis, i.e. y = z = 0, we found, in Appendix B, that
gxy = gxz = 0. Using these expressions and relation (B43), relation (C17) reduces to

Γ1
44 ≡ Γxττ = − 1

2gxx

∂gττ
∂x

. (C21)
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